Robustness of digital camera identification with convolutional neural networks

Author:

Bernacki JarosławORCID

Abstract

AbstractThis paper considers the area of digital forensics (DF). One of the problem in DF is the issue of identification of digital cameras based on images. This aspect has been attractive in recent years due to popularity of social media platforms like Facebook, Twitter etc., where lots of photographs are shared. Although many algorithms and methods for digital camera identification have been proposed, there is lack of research about their robustness. Therefore, in this paper the robustness of digital camera identification with the use of convolutional neural network is discussed. It is assumed that images may be of poor quality, for example, degraded by Poisson noise, Gaussian blur, random noise or removing pixels’ least significant bit. Experimental evaluation conducted on two large image datasets (including Dresden Image Database) confirms usefulness of proposed method, where noised images are recognized with almost the same high accuracy as normal images.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved PRNU noise extraction model for highly compressed image blocks with low resolutions;Multimedia Tools and Applications;2024-01-24

2. Source camera identification based on an adaptive dual-branch fusion residual network;Multimedia Tools and Applications;2023-07-20

3. Deep Neural Network Architecture for Mobile Device Identification;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

4. Binary Classification Architecture for Edge Computing Based on Cognitive Services and Deep Neural Networks;Proceedings of the 14th International Conference on Management of Digital EcoSystems;2022-10-19

5. Deep Feature Learning for Intrinsic Signature Based Camera Discrimination;Big Data Mining and Analytics;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3