Abstract
AbstractThis paper considers the area of digital forensics (DF). One of the problem in DF is the issue of identification of digital cameras based on images. This aspect has been attractive in recent years due to popularity of social media platforms like Facebook, Twitter etc., where lots of photographs are shared. Although many algorithms and methods for digital camera identification have been proposed, there is lack of research about their robustness. Therefore, in this paper the robustness of digital camera identification with the use of convolutional neural network is discussed. It is assumed that images may be of poor quality, for example, degraded by Poisson noise, Gaussian blur, random noise or removing pixels’ least significant bit. Experimental evaluation conducted on two large image datasets (including Dresden Image Database) confirms usefulness of proposed method, where noised images are recognized with almost the same high accuracy as normal images.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献