MNPDenseNet: Automated Monkeypox Detection Using Multiple Nested Patch Division and Pretrained DenseNet201

Author:

Demir Fahrettin Burak,Baygin Mehmet,Tuncer Ilknur,Barua Prabal Datta,Dogan SengulORCID,Tuncer Turker,Ooi Chui Ping,Ciaccio Edward J.,Acharya U. Rajendra

Abstract

Abstract Background Monkeypox is a viral disease caused by the monkeypox virus (MPV). A surge in monkeypox infection has been reported since early May 2022, and the outbreak has been classified as a global health emergency as the situation continues to worsen. Early and accurate detection of the disease is required to control its spread. Machine learning methods offer fast and accurate detection of COVID-19 from chest X-rays, and chest computed tomography (CT) images. Likewise, computer vision techniques can automatically detect monkeypoxes from digital images, videos, and other inputs. Objectives In this paper, we propose an automated monkeypox detection model as the first step toward controlling its global spread. Materials and method A new dataset comprising 910 open-source images classified into five categories (healthy, monkeypox, chickenpox, smallpox, and zoster zona) was created. A new deep feature engineering architecture was proposed, which contained the following components: (i) multiple nested patch division, (ii) deep feature extraction, (iii) multiple feature selection by deploying neighborhood component analysis (NCA), Chi2, and ReliefF selectors, (iv) classification using SVM with 10-fold cross-validation, (v) voted results generation by deploying iterative hard majority voting (IHMV) and (vi) selection of the best vector by a greedy algorithm. Results Our proposal attained a 91.87% classification accuracy on the collected dataset. This is the best result of our presented framework, which was automatically selected from 70 generated results. Conclusions The computed classification results and findings demonstrated that monkeypox could be successfully detected using our proposed automated model.

Funder

Fırat University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3