An optimal feature based network intrusion detection system using bagging ensemble method for real-time traffic analysis
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-12330-3.pdf
Reference37 articles.
1. Abd El Aziz M, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256
2. Aburomman AA, Reaz MBI (2016) Survey of learning methods in intrusion detection systems. In: 2016 International conference on advances in electrical, electronic and systems engineering (ICAEES). IEEE, pp 362–365
3. Akinbo RS, Daramola OA (2021) Ensemble machine learning algorithms for prediction and classification of medical images. In: Machine learning-algorithms, models and applications. Intechopen
4. Bajaj K, Arora A (2013) Improving the intrusion detection using discriminative machine learning approach and improve the time complexity by data mining feature selection methods. Int J Comput Appl 76(1):5–11
5. Buczak AL, Guven E (2015) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18(2):1153–1176
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimized deep autoencoder and BiLSTM for intrusion detection in IoTs-Fog computing;Multimedia Tools and Applications;2024-03-26
2. TV-ADS: A Smarter Attack Detection Scheme Based on Traffic Visualization of Wireless Network Event Cell;網際網路技術學刊;2024-03
3. Cyberattack defense mechanism using deep learning techniques in software-defined networks;International Journal of Information Security;2023-12-15
4. Intrusion detection based on ensemble learning for big data classification;Cluster Computing;2023-11-07
5. SE2CURA - design and implementation of a robust ensemble learning based 2-tier intrusion detection system for real time traffic;Multimedia Tools and Applications;2023-10-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3