Author:
Xiao Bingjie,Nguyen Minh,Yan Wei Qi
Abstract
AbstractWe describe a non-destructive test of apple ripeness using digital images of multiple types of apples. In this paper, fruit images are treated as data samples, artificial intelligence models are employed to implement the classification of fruits and the identification of maturity levels. In order to obtain the ripeness classifications of fruits, we make use of deep learning models to conduct our experiments; we evaluate the test results of our proposed models. In order to ensure the accuracy of our experimental results, we created our own dataset, and obtained the best accuracy of fruit classification by comparing Transformer model and YOLO model in deep learning, thereby attaining the best accuracy of fruit maturity recognition. At the same time, we also combined YOLO model with attention module and gave the fast object detection by using the improved YOLO model.
Funder
Auckland University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献