View recommendation for multi-camera demonstration-based training

Author:

Biswas SaugataORCID,Kruijff ErnstORCID,Veas EduardoORCID

Abstract

AbstractWhile humans can effortlessly pick a view from multiple streams, automatically choosing the best view is a challenge. Choosing the best view from multi-camera streams poses a problem regarding which objective metrics should be considered. Existing works on view selection lack consensus about which metrics should be considered to select the best view. The literature on view selection describes diverse possible metrics. And strategies such as information-theoretic, instructional design, or aesthetics-motivated fail to incorporate all approaches. In this work, we postulate a strategy incorporating information-theoretic and instructional design-based objective metrics to select the best view from a set of views. Traditionally, information-theoretic measures have been used to find the goodness of a view, such as in 3D rendering. We adapted a similar measure known as the viewpoint entropy for real-world 2D images. Additionally, we incorporated similarity penalization to get a more accurate measure of the entropy of a view, which is one of the metrics for the best view selection. Since the choice of the best view is domain-dependent, we chose demonstration-based training scenarios as our use case. The limitation of our chosen scenarios is that they do not include collaborative training and solely feature a single trainer. To incorporate instructional design considerations, we included the trainer’s body pose, face, face when instructing, and hands visibility as metrics. To incorporate domain knowledge we included predetermined regions’ visibility as another metric. All of those metrics are taken into account to produce a parameterized view recommendation approach for demonstration-based training. An online study using recorded multi-camera video streams from a simulation environment was used to validate those metrics. Furthermore, the responses from the online study were used to optimize the view recommendation performance with a normalized discounted cumulative gain (NDCG) value of 0.912, which shows good performance with respect to matching user choices.

Funder

Hochschule Bonn-Rhein-Sieg

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3