Sign language recognition from digital videos using feature pyramid network with detection transformer

Author:

Liu Yu,Nand Parma,Hossain Md Akbar,Nguyen Minh,Yan Wei Qi

Abstract

AbstractSign language recognition is one of the fundamental ways to assist deaf people to communicate with others. An accurate vision-based sign language recognition system using deep learning is a fundamental goal for many researchers. Deep convolutional neural networks have been extensively considered in the last few years, and a slew of architectures have been proposed. Recently, Vision Transformer and other Transformers have shown apparent advantages in object recognition compared to traditional computer vision models such as Faster R-CNN, YOLO, SSD, and other deep learning models. In this paper, we propose a Vision Transformer-based sign language recognition method called DETR (Detection Transformer), aiming to improve the current state-of-the-art sign language recognition accuracy. The DETR method proposed in this paper is able to recognize sign language from digital videos with a high accuracy using a new deep learning model ResNet152 + FPN (i.e., Feature Pyramid Network), which is based on Detection Transformer. Our experiments show that the method has excellent potential for improving sign language recognition accuracy. For instance, our newly proposed net ResNet152 + FPN is able to enhance the detection accuracy up to 1.70% on the test dataset of sign language compared to the standard Detection Transformer models. Besides, an overall accuracy 96.45% was attained by using the proposed method.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3