Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Reference41 articles.
1. Adomavicius G, Kwon Y (2010) Improving aggregate recommendation diversity using rank-based techniques. IEEE Trans Knowl Data Eng 24(5):896–911
2. Akiyama T, Obara K, Tanizaki M (2010) Proposal and Evaluation of Serendipitous Recommendation Method Using General Unexpectedness. In: Proc. Workshop on the Practical Use of Recommender Systems, Algorithms and Technologies, CEUR, 3–10
3. Alhamid MF, Rawashdeh M, Al Osman H, Hossain MS, El Saddik A (2015) Towards context-sensitive collaborative media recommender system. Multimed Tools Appl 74(24):11399–428
4. Aytekin T, Karakaya M (2014) Clustering-based diversity improvement in top-N recommendation. J Intell Inf Syst:1–18
5. Bobadilla J, Ortega F, Hernando A, Bernal J (2012) A collaborative filtering approach to mitigate the new user cold start problem. Knowl-Based Syst 26:225–38
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献