A novel solution of deep learning for endoscopic ultrasound image segmentation: enhanced computer aided diagnosis of gastrointestinal stromal tumor

Author:

Tuladhar Sanira,Alsadoon AbeerORCID,Prasad P. W. C.,Ali Akbas Ezaldeen,Alrubaie Ahmad

Abstract

AbstractGastrointestinal stromal tumor is one of the critical tumors that doctors do not suggest to get frequent endoscopy, so there is a need for a diagnosis system which can process ultrasound images and figure out the tumor. Many gastrointestinal tumor diagnosis methods were developed, but all of these methods used manual contour rather than automatic segmentation. The research adopts enhanced automatic segmentation to improve the diagnosis of the gastrointestinal stromal tumor with deep convolutional neural networks. This solution’s proposed system is an enhanced automated segmentation methodology using multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution, which segments the ultrasound image automatically into the region of interest (the infected area). Convolutional Neural Network with Class Activation Mapping is done to diagnose an image with the tumor for Four datasets, namely (USS1, SH Hospital, SNUH, BUSI). This proposed system helps to get a clearer tumor image, and the accuracy has increased from 84.275% to 88.4%, and the processing time has reduced from 28.525% to 24.575%. The proposed solution enhanced Automatic Segmentation helped to get clearer tumor image which resulted in increased accuracy and decreased performance time compared to the state-of-the-art. Automatic segmentation overcomes the dependency on the expert for drawing the Region of Interest (ROI).

Funder

Charles Sturt University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PolySeg Plus: Polyp Segmentation Using Deep Learning with Cost Effective Active Learning;International Journal of Computational Intelligence Systems;2023-09-14

2. A hybrid feature pyramid network and Efficient Net-B0-based GIST detection and segmentation from fused CT-PET image;Soft Computing;2023-06-05

3. Hybrid Deep Learning Model for Arch of Aorta Classification Based on Slime Mould Algorithm;2023 11th International Conference on Bioinformatics and Computational Biology (ICBCB);2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3