The moving target tracking and segmentation method based on space-time fusion

Author:

Wang Jie,Xuan ShibinORCID,Zhang Hao,Qin Xuyang

Abstract

AbstractAt present, the target tracking method based on the correlation operation mainly uses deep learning to extract spatial information from video frames and then performs correlations on this basis. However, it does not extract the motion features of tracking targets on the time axis, and thus tracked targets can be easily lost when occlusion occurs. To this end, a spatiotemporal motion target tracking model incorporating Kalman filtering is proposed with the aim of alleviating the problem of occlusion in the tracking process. In combination with the segmentation model, a suitable model is selected by scores to predict or detect the current state of the target. We use an elliptic fitting strategy to evaluate the bounding boxes online. Experiments demonstrate that our approach performs well and is stable in the face of multiple challenges (such as occlusion) on the VOT2016 and VOT2018 datasets with guaranteed real-time algorithm performance.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3