Designing hardware for a robust high-speed cryptographic key generator based on multiple chaotic systems and its FPGA implementation for real-time video encryption

Author:

İnce Esra,Karakaya BarışORCID,Türk Mustafa

Abstract

AbstractRecent advancements in communication technologies have highlighted the pivotal role of information security for all individuals and entities. In response, researchers are increasingly focusing on cryptographic solutions to ensure the reliability of confidential information. Recognizing the superiority of chaotic systems preference as entropy source of cryptographic systems, this paper proposes a novel true random number generator (TRNG) design by combining four different chaotic systems outputs, tailored for real-time video encryption application. These chaotic systems are continuous-time Lorenz and fractional-order Chen-Lee systems, as well as discrete-time Logistic and Tent maps. This study generates true random bit (TRB) sequences at a high bit rate (25 Mbps) through the hardware implementations of four distinct chaotic systems to have the best statistical randomness in the resulting output. Then, the cryptographic true random key bits (8-bit at 25 MHz frequency) are employed in the post-processing with real-time video data by using the XOR operation, a fundamental post-processing algorithm. The real-time video encryption application is executed on an experimental assembly, composed of a Field Programmable Gate Array (FPGA) development kit, an OV7670 camera module, a VGA monitor, and prototype circuit boards for the chaotic systems. To evaluate the effectiveness of the proposed encryption system, several security assessments are conducted. These include NIST SP 800 − 22 statistical tests, FIPS 140-1 standards, chi-square tests, histogram and correlation analysis, and NPCR and UACI differential attack resilience tests. Consequently, the findings suggest that the presented real-time embedded cryptosystem is robust and suitable for secure communications, particularly in the realm of video transmission.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Fırat University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3