Emotional quantification of soundscapes by learning between samples

Author:

Ntalampiras StavrosORCID

Abstract

AbstractPredicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference28 articles.

1. Berglund B, Nilsson M, Axelsson S (2007) Soundscape psychophysics in place. 6, 3704–3711. Proc. Inter-Noise 2007 2007(p.):IN07114

2. Brocolini L, Waks L, Lavandier C, Marquis-Favre C, Quoy M, Lavandier M (2010) Comparison between multiple linear regressions and artificial neural networks to predict urban sound quality

3. Davies W, Adams M, Bruce N, Cain R, Jennings P, Carlyle A, Cusack P, Hume K, Plack C (2009) A positive soundscape evaluation system

4. Drossos K, Floros A, Giannakoulopoulos A, Kanellopoulos N (2015) Investigating the impact of sound angular position on the listener affective state. IEEE Trans Affect Comput 6(1):27–42. https://doi.org/10.1109/TAFFC.2015.2392768

5. Fan J, Thorogood M, Pasquier P (2017) Emo-soundscapes: a dataset for soundscape emotion recognition. In: 2017 Seventh international conference on affective computing and intelligent interaction (ACII). https://doi.org/10.1109/ACII.2017.8273600, pp 196–201

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3