Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-12385-2.pdf
Reference48 articles.
1. Bacolod MD, Huang J et al (2020) Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer 20(1):85. https://doi.org/10.1186/s12885-020-6574-4
2. Benhammou Y, Achchab B, Herrera F, Tabik S (2020) BreakHis based breast cancer automatic diagnosis using deep learning: taxonomy, survey and insights. Neurocomputing 375:9–24. https://doi.org/10.1016/j.neucom.2019.09.044
3. Chaudhary PK, Pachori RB (2021) FBSED based automatic diagnosis of COVID-19 using X-ray and CT images. Comput Biol Med 134:104454. https://doi.org/10.1016/j.compbiomed.2021.104454
4. Chaudhary PK, Pachori RB (2021) Automatic diagnosis of glaucoma using two-dimensional Fourier-Bessel series expansion based empirical wavelet transform. Biomed Signal Process Control 64:102237. https://doi.org/10.1016/j.bspc.2020.102237
5. Dembrower K, Liu Y, Azizpour H et al (2020) Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology 294(2):265–272. https://doi.org/10.1148/radiol.2019190872
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ontological modeling with recursive recurrent neural network and crayfish optimization for reliable breast cancer prediction;Biomedical Signal Processing and Control;2025-01
2. A depth analysis of recent innovations in non-invasive techniques using artificial intelligence approach for cancer prediction;Medical & Biological Engineering & Computing;2024-07-16
3. Enhancing breast cancer diagnosis accuracy through genetic algorithm-optimized multilayer perceptron;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-06-06
4. Improved Breast Cancer Classification Approach Using Hybrid Deep Learning Strategies for Tumor Segmentation;Sensing and Imaging;2024-06-01
5. Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches;Multimedia Tools and Applications;2024-05-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3