Smartphone-based food recognition system using multiple deep CNN models

Author:

Fakhrou Abdulnaser,Kunhoth JayakanthORCID,Al Maadeed Somaya

Abstract

AbstractPeople with blindness or low vision utilize mobile assistive tools for various applications such as object recognition, text recognition, etc. Most of the available applications are focused on recognizing generic objects. And they have not addressed the recognition of food dishes and fruit varieties. In this paper, we propose a smartphone-based system for recognizing the food dishes as well as fruits for children with visual impairments. The Smartphone application utilizes a trained deep CNN model for recognizing the food item from the real-time images. Furthermore, we develop a new deep convolutional neural network (CNN) model for food recognition using the fusion of two CNN architectures. The new deep CNN model is developed using the ensemble learning approach. The deep CNN food recognition model is trained on a customized food recognition dataset.The customized food recognition dataset consists of 29 varieties of food dishes and fruits. Moreover, we analyze the performance of multiple state of art deep CNN models for food recognition using the transfer learning approach. The ensemble model performed better than state of art CNN models and achieved a food recognition accuracy of 95.55 % in the customized food dataset. In addition to that, the proposed deep CNN model is evaluated in two publicly available food datasets to display its efficacy for food recognition tasks.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference36 articles.

1. (2011) Vision impairment and blindness. https://www.who.int/newsroom/fact-sheets/detail/blindness-and-visualimpairment. Accessed 22 Jan 2021

2. (2020) Custom food dataset. https://www.dropbox.com/sh/irxb953mt9od181/AAD8QLXzuBZpdMdsKyFEWFwFa?dl=0. Accessed 22 Jan 2021

3. Aguilar E, Bolaños M, Radeva P (2019) Regularized uncertainty-based multi-task learning model for food analysis. J Vis Commun Image Represent 60:360–370

4. pp;E Aguilar,2019

5. Anthimopoulos MM, Gianola L, Scarnato L, Diem P, Mougiakakou SG (2014) A food recognition system for diabetic patients based on an optimized bag-of-features model. IEEE J Biomed Health Inform 18(4):1261–1271

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3