An improved deep sequential model for context-aware POI recommendation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-15540-5.pdf
Reference44 articles.
1. Ali A, Zhu Y, Chen Q, Yu J, Cai H (2019) Leveraging spatio-temporal patterns for predicting citywide traffic crowd flows using deep hybrid neural networks. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). https://doi.org/10.1109/icpads47876.2019.00025
2. Ali A, Zhu Y, Zakarya M (2021) A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing. Multimed Tools Appl 80(20):31401–31433. https://doi.org/10.1007/s11042-020-10486-4
3. Ali A, Zhu Y, Zakarya M (2021) Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks. Inform Sci 577:852–870. https://doi.org/10.1016/j.ins.2021.08.042
4. Ali A, Zhu Y, Zakarya M (2022) Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Networks 145:233–247. https://doi.org/10.1016/j.neunet.2021.10.021
5. Balázs H, Alexandros K, Linas B, Domonkos T (2015) Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey of sequential recommendation systems: Techniques, evaluation, and future directions;Information Systems;2024-11
2. Extracting Representations from Multi-View Contextual Graphs via Convolutional Neural Networks for Point-of-Interest Recommendation;Applied Sciences;2024-08-09
3. Euclidean embedding with preference relation for recommender systems;Multimedia Tools and Applications;2024-04-02
4. Pedestrian trajectory prediction based on spatio-temporal attention mechanism;International Journal of Machine Learning and Cybernetics;2024-02-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3