A hybrid deep feature selection framework for emotion recognition from human speeches
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-14052-y.pdf
Reference70 articles.
1. Abbaschian BJ, Sierra-Sosa D, Elmaghraby A (2021) Deep learning techniques for speech emotion recognition, from databases to models. Sensors
2. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609
3. Agrawal P, Abutarboush HF, Ganesh T, Mohamed AW (2021) Metaheuristic algorithms on feature selection: a survey of one decade of research (2009-2019). IEEE Access 9:26766–26791
4. Ahmed S, Ghosh KK, Garcia-Hernandez L, Abraham A, Sarkar R (2021) Improved coral reefs optimization with adaptive β-hill climbing for feature selection. Neural Comput & Applic 33(12):6467–6486
5. Akçay MB, Oğuz K (2020) Speech emotion recognition: emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Comm 116:56–76
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced feature combinational optimization for multivariate time series based dynamic early warning in power systems;Expert Systems with Applications;2024-10
2. A novel two-way feature extraction technique using multiple acoustic and wavelets packets for deep learning based speech emotion recognition;Multimedia Tools and Applications;2024-06-17
3. Automatic Generation of Topology Diagrams for Strongly-Meshed Power Transmission Systems;IEEE Transactions on Power Systems;2024-01
4. High-Dimensional Feature Selection for Power System Congestion Event Prognosis With Enhanced Evolutionary Computation;IEEE Transactions on Power Systems;2024-01
5. Speech Emotion Recognition Using Deep CNNs Trained on Log-Frequency Spectrograms;Studies in Big Data;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3