An overview of ensemble and feature learning in few-shot image classification using siamese networks

Author:

Valero-Mas Jose J.ORCID,Gallego Antonio JavierORCID,Rico-Juan Juan RamónORCID

Abstract

AbstractSiamese Neural Networks (SNNs) constitute one of the most representative approaches for addressing Few-Shot Image Classification. These schemes comprise a set of Convolutional Neural Network (CNN) models whose weights are shared across the network, which results in fewer parameters to train and less tendency to overfit. This fact eventually leads to better convergence capabilities than standard neural models when considering scarce amounts of data. Based on a contrastive principle, the SNN scheme jointly trains these inner CNN models to map the input image data to an embedded representation that may be later exploited for the recognition process. However, in spite of their extensive use in the related literature, the representation capabilities of SNN schemes have neither been thoroughly assessed nor combined with other strategies for boosting their classification performance. Within this context, this work experimentally studies the capabilities of SNN architectures for obtaining a suitable embedded representation in scenarios with a severe data scarcity, assesses the use of train data augmentation for improving the feature learning process, introduces the use of transfer learning techniques for further exploiting the embedded representations obtained by the model, and uses test data augmentation for boosting the performance capabilities of the SNN scheme by mimicking an ensemble learning process. The results obtained with different image corpora report that the combination of the commented techniques achieves classification rates ranging from 69%to 78%with just 5 to 20 prototypes per class whereas the CNN baseline considered is unable to converge. Furthermore, upon the convergence of the baseline model with the sufficient amount of data, still the adequate use of the studied techniques improves the accuracy in figures from 4%to 9%.

Funder

Ministerio de Ciencia e Innovación

Conselleria d’Educació, Investigació, Cultura i Esport

Conselleria d’Innovació, Universitats, Ciència i Societat Digital

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3