Author:
Prabhu Swathi,Prasad Keerthana,Lu Xuequan,Robels-Kelly Antonio,Hoang Thuong
Abstract
AbstractSquamous cell carcinoma is the most common type of cancer that occurs in squamous cells of epithelial tissue. Histopathological evaluation of tissue samples is the gold standard approach used for carcinoma diagnosis. SCC detection based on various histopathological features often employs traditional machine learning approaches or pixel-based deep CNN models. This study aims to detect keratin pearl, the most prominent SCC feature, by implementing RetinaNet one-stage object detector. Further, we enhance the model performance by incorporating an attention module. The proposed method is more efficient in detection of small keratin pearls. This is the first work detecting keratin pearl resorting to the object detection technique to the extent of our knowledge. We conducted a comprehensive assessment of the model both quantitatively and qualitatively. The experimental results demonstrate that the proposed approach enhanced the mAP by about 4% compared to default RetinaNet model.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Parsed Region Feature Extraction Method for Hepatocellular Carcinoma Detection Using Medical Images;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18