Sentiment analysis of COVID-19 social media data through machine learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-13492-w.pdf
Reference51 articles.
1. Ansari GJ, Shah JH, Yasmin M, Sharif M, Fernandes SL (2018) A novel machine learning approach for scene text extraction. Futur Gener Comput Syst 87:328–340
2. Basha SM, Rajput DS (2017) Evaluating the impact of feature selection on overall performance of sentiment analysis. In: Proceedings of the 2017 international conference on information technology. pp. 96-102
3. Basha SM, Rajput DS (2018) Parsing based sarcasm detection from literal language in tweets. Recent Pat Comput Sci 11(1):62–69
4. Basha SM, Rajput DS (2018) A supervised aspect level sentiment model to predict overall sentiment on tweeter documents. Int J Metadata Semant Ontol 13(1):33–41
5. Basha SM, Rajput DS (2019) An innovative topic-based customer complaints sentiment classification system. Int J Bus Innov Res 20(3):375–391
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Intelligence, the Digital Surgeon: Unravelling Its Emerging Footprint in Healthcare – The Narrative Review;Journal of Multidisciplinary Healthcare;2024-08
2. A review on emotion detection by using deep learning techniques;Artificial Intelligence Review;2024-07-11
3. A novel technique for identification and classification of HIV/AIDS related social media data using LD-KMEANS and DBN-LSTM;Multimedia Tools and Applications;2024-05-10
4. Punctuation and lexicon aid representation: A hybrid model for short text sentiment analysis on social media platform;Journal of King Saud University - Computer and Information Sciences;2024-03
5. Understanding Social Networks Using Machine Learning Sentimental Analysis Algorithms;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3