Multi-modality learning for human action recognition
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-019-08576-z.pdf
Reference42 articles.
1. Asadi-Aghbolaghi M, Kasaei S (2018) Supervised spatio-temporal kernel descriptor for human action recognition from RGB-depth videos. Multimed Tools Appl 77(11):14115–14135
2. Baradel F, Wolf C, Mille J (2018) Human activity recognition with pose-driven attention to RGB. In: British machine vision conference (BMVC), pp 1–14
3. Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) Dynamic image networks for action recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3034–3042
4. Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 248–255
5. Donahue J, Hendricks LA, Rohrbach M, Venugopalan S, Guadarrama S, Saenko K, Darrell T (2017) Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans Pattern Anal Mach Intell (TPAMI) 39 (4):677–691
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multimodal vision-based human action recognition using deep learning: a review;Artificial Intelligence Review;2024-06-19
2. SynthAct: Towards Generalizable Human Action Recognition based on Synthetic Data;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13
3. Study on TNM Classification Diagnosis of Colorectal Cancer Based on Improved Self-supervised Contrast Learning;Communications in Computer and Information Science;2024
4. Multimodal action recognition: a comprehensive survey on temporal modeling;Multimedia Tools and Applications;2023-12-22
5. Segment differential aggregation representation and supervised compensation learning of ConvNets for human action recognition;Science China Technological Sciences;2023-12-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3