A novel facial image recognition method based on perceptual hash using quintet triple binary pattern

Author:

Tuncer Turker,Dogan Sengul,Abdar Moloud,Pławiak PawełORCID

Abstract

AbstractImage classification (categorization) can be considered as one of the most breathtaking domains of contemporary research. Indeed, people cannot hide their faces and related lineaments since it is highly needed for daily communications. Therefore, face recognition is extensively used in biometric applications for security and personnel attendance control. In this study, a novel face recognition method based on perceptual hash is presented. The proposed perceptual hash is utilized for preprocessing and feature extraction phases. Discrete Wavelet Transform (DWT) and a novel graph based binary pattern, called quintet triple binary pattern (QTBP), are used. Meanwhile, the K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) algorithms are employed for classification task. The proposed face recognition method is tested on five well-known face datasets: AT&T, Face94, CIE, AR and LFW. Our proposed method achieved 100.0% classification accuracy for the AT&T, Face94 and CIE datasets, 99.4% for AR dataset and 97.1% classification accuracy for the LFW dataset. The time cost of the proposed method is O(nlogn). The obtained results and comparisons distinctly indicate that our proposed has a very good classification capability with short execution time.

Funder

Tadeusz Kosciuszko Cracow University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Content-based face image retrieval using quaternion based local diagonal extreme value pattern;Multimedia Tools and Applications;2024-01-24

2. FRIH: A face recognition framework using image hashing;Multimedia Tools and Applications;2024-01-03

3. Identifying Occluded Faces with a Modified Structural Similarity Index Measure;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15

4. CC-CNN: A cross connected convolutional neural network using feature level fusion for facial expression recognition;Multimedia Tools and Applications;2023-08-23

5. Semantic Communications for Wireless Sensing: RIS-Aided Encoding and Self-Supervised Decoding;IEEE Journal on Selected Areas in Communications;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3