Estimation of control area in badminton doubles with pose information from top and back view drone videos

Author:

Ding NingORCID,Takeda Kazuya,Jin Wenhui,Bei Yingjiu,Fujii Keisuke

Abstract

AbstractThe application of visual tracking to the performance analysis of sports players in dynamic competitions is vital for effective coaching. In doubles matches, coordinated positioning is crucial for maintaining control of the court and minimizing opponents’ scoring opportunities. The analysis of such teamwork plays a vital role in understanding the dynamics of the game. However, previous studies have primarily focused on analyzing and assessing singles players without considering occlusion in broadcast videos. These studies have relied on discrete representations, which involve the analysis and representation of specific actions (e.g., strokes) or events that occur during the game while overlooking the meaningful spatial distribution. In this work, we present the first annotated drone dataset from top and back views in badminton doubles and propose a framework to estimate the control area probability map, which can be used to evaluate teamwork performance. We present an efficient framework of deep neural networks that enables the calculation of full probability surfaces. This framework utilizes the embedding of a Gaussian mixture map of players’ positions and employs graph convolution on their poses. In the experiment, we verify our approach by comparing various baselines and discovering the correlations between the score and control area. Additionally, we propose a practical application for assessing optimal positioning to provide instructions during a game. Our approach offers both visual and quantitative evaluations of players’ movements, thereby providing valuable insights into doubles teamwork. The dataset and related project code is available at https://github.com/Ning-D/Drone_BD_ControlArea

Funder

Japan Science and Technology Corporation

Japan Society for the Promotion of Science

Scientific Research Project of Higher Education Institutions of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3