Research on visual simulation for complex weapon equipment interoperability based on MBSE

Author:

Yang HaigenORCID,Xia Zhun,Chen Yanqing,Zhu Linqun,Dai Luohao,Xu Ruotian,Sun GuiYing,Yu Hongyang,Xu Wenting

Abstract

AbstractAs military reforms continue to develop, the battlefield environment is becoming increasingly complex, and traditional single-service combat methods have evolved into integrated joint and collaborative information operations that break down service boundaries on land, sea, and air. The level of weapon system confrontation has also evolved into a system-to-system confrontation. Traditional document-based system architecture design methods can no longer address the complexity and emergent challenges of weapon system construction. In this paper, based on model-driven system engineering, an open, integrated, model-driven weapon equipment interaction system that supports human interaction was constructed using the SysML modeling language and Magicdraw modeling tool. The Unreal Engine 4 landscape building function was used to construct a virtual battlefield environment, and a communication server was developed using C# language to perform visual simulation of interoperability between weapon systems. Based on model-driven weapon equipment interoperability, visual simulation is used to ensure that the function of the weapon equipment system meets the requirements of combat and the combat effectiveness of the system is maximized.

Funder

Huiyan Project of Ministry of Science and Technology of the People's Republic of China

the National Key R&D Program of China

the National Defense Basic Scientific Research Program of China

the Key Scientific Project Program of National Defense of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3