Funder
Birla Institute of Technology and Science, Pilani
Nvidia
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Reference63 articles.
1. Ali A, Zhu Y, Chen Q, Yu J, Cai H (2019) Leveraging spatio-temporal patterns for predicting citywide traffic crowd flows using deep hybrid neural networks. In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), IEEE, pp 125–132
2. Ali A, Zhu Y, Zakarya M (2021) A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing. Multimed Tools Appl 1–33
3. Arbelaez P, Maire M, Fowlkes C, Malik J (2010) Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence 33(5):898–916
4. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: Precup D, Teh YW (eds) Proceedings of the 34th International Conference on Machine Learning, PMLR, International Convention Centre, Sydney, Australia. Proceedings of Machine Learning Research 70:214–223. http://proceedings.mlr.press/v70/arjovsky17a.html
5. Awan N, Ali A, Khan F, Zakarya M, Alturki R, Kundi M, Alshehri MD, Haleem M (2021) Modeling dynamic spatio-temporal correlations for urban traffic flows prediction. IEEE Access 9:26502–26511
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献