A survey of recent work on video summarization: approaches and techniques
Author:
Funder
None
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-10977-y.pdf
Reference129 articles.
1. Ajmal M, Ashraf MH, Shakir M, Abbas Y and Shah FA (2012) Video summarization: techniques and classification. In: International Conference on Computer Vision and Graphics pp. 1–13. https://doi.org/10.1007/978-3-642-33564-8_1
2. Angadi S, Naik V (2014), “Entropy based fuzzy C means clustering and key frame extraction for sports video summarization”, in fifth international conference on signal and image processing, pp. 271-279.
3. Aparício M, Figueiredo P, Raposo F, Martins de Matos D, Ribeiro R, Marujo L (2016) Summarization of films and documentaries based on subtitles and scripts. Pattern Recogn Lett 73:7–12
4. Atencio P, German ST, Branch JW, Delrieux C (2019) Video summarization by deep visual and categorical diversity. IET Comput Vis 13(6):569–577
5. Barbeiri TTDS, Goularte R (2020) Content selection criteria for news multi-video summarization based on human strategies. International Journal on Digital Libraries, 1–14
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reconstructive network under contrastive graph rewards for video summarization;Expert Systems with Applications;2024-09
2. Global–local spatio-temporal graph convolutional networks for video summarization;Computers and Electrical Engineering;2024-09
3. An Approach for Video Summarization based on Unsupervised Learning using Deep Semantic Features and Keyframe Extraction;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03
4. Static video summarization based on genetic algorithm and deep learning approach;Multimedia Tools and Applications;2024-06-03
5. Effective Video Summarization Using Channel Attention-Assisted Encoder–Decoder Framework;Symmetry;2024-06-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3