Detecting COVID-19 in chest CT images based on several pre-trained models

Author:

Hassan EsraaORCID,Shams Mahmoud Y.,Hikal Noha A.,Elmougy Samir

Abstract

AbstractThis paper explores the use of chest CT scans for early detection of COVID-19 and improved patient outcomes. The proposed method employs advanced techniques, including binary cross-entropy, transfer learning, and deep convolutional neural networks, to achieve accurate results. The COVIDx dataset, which contains 104,009 chest CT images from 1,489 patients, is used for a comprehensive analysis of the virus. A sample of 13,413 images from this dataset is categorised into two groups: 7,395 CT scans of individuals with confirmed COVID-19 and 6,018 images of normal cases. The study presents pre-trained transfer learning models such as ResNet (50), VGG (19), VGG (16), and Inception V3 to enhance the DCNN for classifying the input CT images. The binary cross-entropy metric is used to compare COVID-19 cases with normal cases based on predicted probabilities for each class. Stochastic Gradient Descent and Adam optimizers are employed to address overfitting issues. The study shows that the proposed pre-trained transfer learning models achieve accuracies of 99.07%, 98.70%, 98.55%, and 96.23%, respectively, in the validation set using the Adam optimizer. Therefore, the proposed work demonstrates the effectiveness of pre-trained transfer learning models in enhancing the accuracy of DCNNs for image classification. Furthermore, this paper provides valuable insights for the development of more accurate and efficient diagnostic tools for COVID-19.

Funder

Ministry of Higher Education

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3