Abstract
AbstractA robust segmentation method that can be used to perform measurements on toenails is presented. The proposed method is used as the first step in a clinical trial to objectively quantify the incidence of a particular pathology. For such an assessment, it is necessary to distinguish a nail, which locally appears to be similar to the skin. Many algorithms have been used, each of which leverages different aspects of toenail appearance. We used the Hough transform to locate the tip of the toe and estimate the nail location and size. Subsequently, we classified the super-pixels of the image based on their geometric and photometric information. Thereafter, the watershed transform delineated the border of the nail. The method was validated using a 348-image medical dataset, achieving an accuracy of 0.993 and an F-measure of 0.925. The proposed method is considerably robust across samples, with respect to factors such as nail shape, skin pigmentation, illumination conditions, and appearance of large regions affected by a medical condition.
Funder
Agencia Estatal de Investigación
agencia estatal de investigación
Govern de les Illes Balears
Universitat de Les Illes Balears
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Review on Machine Learning for Nail Diseases Prediction from Ayurvedic Perspective;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15