WBCs-Net: type identification of white blood cells using convolutional neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-11449-z.pdf
Reference33 articles.
1. Alam MM, Islam MT (2019) Machine learning approach of automatic identification and counting of blood cells. Healthc Technol Lett 6(4):103–108
2. Aliyu HA, Sudirman R, Abdul Razak MA, Abd Wahab MA. (2018) Red blood cell classification: deep learning architecture versus support vector machine. In: 2018 2nd international conference on biosignal analysis, processing and systems (ICBAPS), p 142–7
3. Andrea A, Santiago A, Anna M, Laura P, José R (2019) Recognition of peripheral blood cell images using convolutional neural networks. Comput Methods Programs Biomed 180:105020
4. Baghel N, Dutta MK, Burget R (2020) Automatic diagnosis of multiple cardiac diseases from PCG signals using convolutional neural network. Comput Methods Programs Biomed 197:105750
5. Bikhet SF, Darwish AM, Tolba HA, Shaheen SI (2000) Segmentation and classification of white blood cells 2259–61
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An explainable AI-based blood cell classification using optimized convolutional neural network;Journal of Pathology Informatics;2024-12
2. ConcatNeXt: An automated blood cell classification with a new deep convolutional neural network;Multimedia Tools and Applications;2024-08-02
3. Advanced Convolutional Neural Networks for Precise White Blood Cell Subtype Classification in Medical Diagnostics;Electronics;2024-07-18
4. Diffusion-based Wasserstein generative adversarial network for blood cell image augmentation;Engineering Applications of Artificial Intelligence;2024-07
5. Classification of white blood cells (leucocytes) from blood smear imagery using machine and deep learning models: A global scoping review;PLOS ONE;2024-06-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3