Abstract
AbstractPrincipal Component Analysis (PCA) has been successfully applied to many applications, including ear recognition. This paper presents a Two Dimensional Multi-Band PCA (2D-MBPCA) method, inspired by PCA based techniques for multispectral and hyperspectral images, which have demonstrated significantly higher performance to that of standard PCA. The proposed method divides the input image into a number of images based on the intensity of the pixels. Three different methods are used to calculate the pixel intensity boundaries, called: equal size, histogram, and greedy hill climbing based techniques. Conventional PCA is then applied on the resulting images to extract their eigenvectors, which are used as features. The optimal number of bands was determined using the intersection of number of features and total eigenvector energy. Experimental results on two benchmark ear image datasets demonstrate that the proposed 2D-MBPCA technique significantly outperforms single image PCA by up to 56.41% and the eigenfaces technique by up to 29.62% with respect to matching accuracy on images from two benchmark datasets. Furthermore, it gives very competitive results to those of learning based techniques at a fraction of their computational cost and without a need for training.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献