Deep learning approach to detect cyberbullying on twitter

Author:

Aliyeva Çinare Oğuz,Yağanoğlu MeteORCID

Abstract

AbstractIn recent years, especially children and adolescents have shown increased interest in social media, making them a potential risk group for cyberbullying. Cyberbullying posts spread very quickly, often taking a long time to be deleted and sometimes remaining online indefinitely. Cyberbullying can have severe mental, psychological, and emotional effects on children and adolescents, and in extreme cases, it can lead to suicide. Turkey is among the top 10 countries with the highest number of children who are victims of cyberbullying. However, there are very few studies conducted in the Turkish language on this topic. This study aims to identify cyberbullying in Turkish Twitter posts. The Multi-Layer Detection (MLP) based model was evaluated using a dataset of 5000 tweets. The model was trained using both social media features and textual features extracted from the dataset. Textual features were obtained using various feature extraction methods such as Bag of Words (BOW), Term Frequency-Inverse Term Frequency (TF-IDF), Hashing Vectorizer, N-gram, and word embedding. These features were utilized in training the model, and their effectiveness was evaluated. The experiments revealed that the features obtained from TF-IDF and unigram methods significantly improved the model’s performance. Subsequently, unnecessary features were eliminated using the Chi-Square feature selection method. The proposed model achieved a higher accuracy of 93.2% compared to machine learning (ML) methods used in previous studies on the same dataset. Additionally, the proposed model was compared with popular deep learning models in the literature, such as LSTM, BLSTM, and CNN, demonstrating promising results.

Funder

Ataturk University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3