Prediction of wind turbine blades icing based on feature Selection and 1D-CNN-SBiGRU
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-11700-7.pdf
Reference37 articles.
1. Bailey D, Wright E (2003) Landlines - practical SCADA for industry - 4. Practical Scada for Industry 49(22):100–141
2. Battishti L (2015) Wind turbines in cold climates. Springer International Publishing, Switzerland
3. Becerra-Rico J, Aceves-Fernández MA, Esquivel-Escalante K et al (2020) Airborne particle pollution predictive model using Gated Recurrent Unit (GRU) deep neural networks. Earth Sci Inf:1–14
4. Chen X, Lei D, Xu G (2020) Prediction of Icing Fault of Wind Turbine Blades Based on Deep Learning. 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). IEEE
5. Eren L, Ince T, Kiranyaz S (2019) A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J Signal Process Syst 91(2):179–189
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault diagnosis of wind turbine blade icing based on feature engineering and the PSO-ConvLSTM-transformer;Ocean Engineering;2024-06
2. Wind energy system fault classification and detection using deep convolutional neural network and particle swarm optimization‐extreme gradient boosting;IET Energy Systems Integration;2024-03-12
3. A review of icing prediction techniques for four typical surfaces in low-temperature natural environments;Applied Thermal Engineering;2024-03
4. A multi convolution pooling group fault diagnosis model with high generalization across data sets and large receptive field characteristics considering industrial environmental noise;Multimedia Tools and Applications;2024-02-06
5. An Investigation Into the Behavior of Intelligent Fault Diagnostic Models Under Imbalanced Data;IEEE Transactions on Instrumentation and Measurement;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3