Traffic sign recognition based on deep learning

Author:

Zhu Yanzhao,Yan Wei Qi

Abstract

AbstractIntelligent Transportation System (ITS), including unmanned vehicles, has been gradually matured despite on road. How to eliminate the interference due to various environmental factors, carry out accurate and efficient traffic sign detection and recognition, is a key technical problem. However, traditional visual object recognition mainly relies on visual feature extraction, e.g., color and edge, which has limitations. Convolutional neural network (CNN) was designed for visual object recognition based on deep learning, which has successfully overcome the shortcomings of conventional object recognition. In this paper, we implement an experiment to evaluate the performance of the latest version of YOLOv5 based on our dataset for Traffic Sign Recognition (TSR), which unfolds how the model for visual object recognition in deep learning is suitable for TSR through a comprehensive comparison with SSD (i.e., single shot multibox detector) as the objective of this paper. The experiments in this project utilize our own dataset. Pertaining to the experimental results, YOLOv5 achieves 97.70% in terms of mAP@0.5 for all classes, SSD obtains 90.14% mAP in the same term. Meanwhile, regarding recognition speed, YOLOv5 also outperforms SSD.

Funder

Auckland University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3