Automated multifocus pollen detection using deep learning
-
Published:2024-02-07
Issue:28
Volume:83
Page:72097-72112
-
ISSN:1573-7721
-
Container-title:Multimedia Tools and Applications
-
language:en
-
Short-container-title:Multimed Tools Appl
Author:
Gallardo RamónORCID, García-Orellana Carlos J., González-Velasco Horacio M., García-Manso Antonio, Tormo-Molina Rafael, Macías-Macías Miguel, Abengózar Eugenio
Abstract
AbstractPollen-induced allergies affect a significant part of the population in developed countries. Current palynological analysis in Europe is a slow and laborious process which provides pollen information in a weekly-cycle basis. In this paper, we describe a system that allows to locate and classify, in a single step, the pollen grains present in standard glass microscope slides. Besides, processing the samples in the z-axis allows us to increase the probability of detecting grains compared to solutions based on one image per sample. Our system has been trained to recognise 11 pollen types, achieving 97.6 % success rate locating grains, of which 96.3 % are also correctly identified (0.956 macro–F1 score), and with a 2.4 % grains lost. Our results indicate that deep learning provides a robust framework to address automated identification of various pollen types, facilitating their daily measurement.
Funder
Junta de Extremadura
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://doi.org/10.5281/zenodo.4724125 2. Arias DG, Cirne MVM, Chire JE, Pedrini H (2017) Classification of pollen grain images based on an ensemble of classifiers. In: 2017 16th IEEE International Conference on Machine Learning and Applications. https://doi.org/10.1109/ICMLA.2017.0-153 3. Astolfi G, Gonçalves AB, Menezes GV, Borges FSB, Astolfi ACMN, Matsubara ET, Alvarez M, Pistori H (2020) Pollen73s: An image dataset for pollen grains classification. Ecol Inform. https://doi.org/10.1016/j.ecoinf.2020.101165 4. Battiato S, Ortis A, Trenta F, Ascari L, Politi M, Siniscalco C (2020) Pollen13k: A large scale microscope pollen grain image dataset. In: 2020 IEEE International Conference on Image Processing. https://doi.org/10.1109/ICIP40778.2020.9190776 5. Chudyk C, Castaneda H, Léger R, Yahiaoui I, Boochs F (2015) Development of an automatic pollen classification system using shape, texture and aperture features. In: LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, p 65–74
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|