Skin cancer disease images classification using deep learning solutions
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-10952-7.pdf
Reference72 articles.
1. Abbas Q, Garcia IF, Celebi ME, Ahmad W, Mushtaq Q (2013) Unified approach for lesion border detection based on mixture modeling and local entropy thresholding. Skin Res Technol 19:314–319. https://doi.org/10.1111/srt.12047
2. Agilandeeswari L, Sagar MT, Keerthana N (2019) Skin lesion detection using texture based segmentation and classification by convolutional neural networks (CNN). Int J Innov Technol Exploring Eng 9:2117–2120. https://doi.org/10.35940/ijitee.B7085.129219
3. Attaran M, Deb P (2018) Machine learning: the new ‘big thing’ for competitive advantage. Int J Knowledge Eng Data Mining 5:277–305
4. Bajwa MN, Muta K, Malik MI, Siddiqui SA, Braun SA, Homey B, Dengel A, Ahmed S (2020) Computer-aided diagnosis of skin diseases using deep neural networks. Appl Sci 10:1–13. https://doi.org/10.3390/app10072488
5. Barbu T (2003) A pattern recognition approach to image segmentation. Proc Romanian Acad Ser A 4:143–148
Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Segmentation and detection of skin cancer using deep learning-enabled artificial Namib beetle optimization;Biomedical Signal Processing and Control;2024-10
2. RvXmBlendNet: A Multi-architecture Hybrid Model for Improved Skin Cancer Detection;Human-Centric Intelligent Systems;2024-09-09
3. Skin cancer classification using non-local means denoising and sparse dictionary learning based CNN;Journal of Electrical Systems and Information Technology;2024-09-06
4. A hybrid Grasshopper optimization algorithm for skin lesion segmentation and melanoma classification using deep learning;Healthcare Analytics;2024-06
5. A model for skin cancer using combination of ensemble learning and deep learning;PLOS ONE;2024-05-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3