Abstract
AbstractFashion retail has a large and ever-increasing popularity and relevance, allowing customers to buy anytime finding the best offers and providing satisfactory experiences in the shops. Consequently, Customer Relationship Management solutions have been enhanced by means of several technologies to better understand the behaviour and requirements of customers, engaging and influencing them to improve their shopping experience, as well as increasing the retailers’ profitability. Current solutions on marketing provide a too general approach, pushing and suggesting on most cases, the popular or most purchased items, losing the focus on the customer centricity and personality. In this paper, a recommendation system for fashion retail shops is proposed, based on a multi clustering approach of items and users’ profiles in online and on physical stores. The proposed solution relies on mining techniques, allowing to predict the purchase behaviour of newly acquired customers, thus solving the cold start problems which is typical of the systems at the state of the art. The presented work has been developed in the context of Feedback project partially founded by Regione Toscana, and it has been conducted on real retail company Tessilform, Patrizia Pepe mark. The recommendation system has been validated in store, as well as online.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献