Multi Clustering Recommendation System for Fashion Retail

Author:

Bellini Pierfrancesco,Palesi Luciano Alessandro Ipsaro,Nesi PaoloORCID,Pantaleo Gianni

Abstract

AbstractFashion retail has a large and ever-increasing popularity and relevance, allowing customers to buy anytime finding the best offers and providing satisfactory experiences in the shops. Consequently, Customer Relationship Management solutions have been enhanced by means of several technologies to better understand the behaviour and requirements of customers, engaging and influencing them to improve their shopping experience, as well as increasing the retailers’ profitability. Current solutions on marketing provide a too general approach, pushing and suggesting on most cases, the popular or most purchased items, losing the focus on the customer centricity and personality. In this paper, a recommendation system for fashion retail shops is proposed, based on a multi clustering approach of items and users’ profiles in online and on physical stores. The proposed solution relies on mining techniques, allowing to predict the purchase behaviour of newly acquired customers, thus solving the cold start problems which is typical of the systems at the state of the art. The presented work has been developed in the context of Feedback project partially founded by Regione Toscana, and it has been conducted on real retail company Tessilform, Patrizia Pepe mark. The recommendation system has been validated in store, as well as online.

Funder

regione toscana

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3