Innovative chaotic dragon fractal (ChDrFr) shapes for efficient encryption applications: a new highly secure image encryption algorithm

Author:

Mohammed Amira G.,El-Khamy Said E.

Abstract

AbstractIn this paper, the generation of new dragon fractal shapes with chaotic iteration parameters is introduced as the main component of a new efficient approach for different cryptographic applications. This process involves applying a chaotic map, which is considered the initiator pattern, to generate different chaotic dragon fractal (ChDrFr) shapes in lieu of lines (which are classically used to generate dragon fractals). This is the new concept of this paper. The used chaotic maps are sensitive to their initial conditions and are characterized by randomness; hence, the resulting scheme is highly secure. As the resulting ChDrFr shapes have sparse structures, the spaces are packed with random values generated from another 5D hyper chaotic map. For encryption applications based on the substitution approach, one of the five generated ChFrDr shapes can be used to construct a chaotic fractal (ChFr) S-Box, while the other four ChDrFr shapes can be used for diffusion purposes. As an application to these new ChDrFr shapes and the ChFr S-Box, we introduce in this paper a new highly secure image encryption algorithm. A Henon chaotic map is used as the initiator of the ChDrFr shapes. The integer wavelet transform (IWT) is used to generate an approximation and three detail sub-bands for the original image. As the approximation sub-band contains a considerable amount of information about the original image, the above-described ChFr S-Box is used as a replacement for each pixel’s value in this sub-band. Then, the resultant substituted image is diffused with one of the generated ChFrDr shapes. The other three ChDrFr shapes are XORed with the details sub-images. Numerical simulation is applied to ensure the efficacy of encrypted images against different attacks. In particular, the correlation coefficient between the initial and the generated images is shown to be nearly zero. Moreover, tests reveal that the information entropy of the encrypted images and UACI were close to their optimum values. The properties of the newly proposed ChDrFr-based encryption algorithm are compared to the ones obtained by other encryption algorithms, and the results prove the superiority of this newly proposed algorithm to other types of encryption methods.

Funder

Alexandria Higher Institute of Engineering Studies

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3