Intelligent plant disease diagnosis using convolutional neural network: a review

Author:

Joseph Diana Susan,Pawar Pranav MORCID,Pramanik Rahul

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference120 articles.

1. Adegun A, Viriri S (2021) Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif Intell Rev 54(2):811–841

2. Amara J, Bouaziz B, Algergawy A (2017) A deep learning-based approach for banana leaf diseases classification. Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband

3. Arivazhagan S, Ligi SV (2018) Mango leaf diseases identification using convolutional neural network. Int J Pure Appl Math 120(6):11067–11079

4. Arsenovic M, Karanovic M, Sladojevic S, Anderla A, Stefanovic D (2019) Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 11(7):939

5. Barbedo JGA (2016) A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst Eng 144:52–60

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine/deep learning techniques for disease and nutrient deficiency disorder diagnosis in rice crops: A systematic review;Biosystems Engineering;2024-08

2. iCrop: Enabling High-Precision Crop Disease Detection via LoRa Technology;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

3. Rice Leaf Disease Stages Classification Using Few-shot Learning Techniques;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28

4. Mobile-Xcep hybrid model for plant disease diagnosis;Multimedia Tools and Applications;2024-06-22

5. MiniTomatoNet: a lightweight CNN for tomato leaf disease recognition on heterogeneous FPGA-SoC;The Journal of Supercomputing;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3