Deep-HAR: an ensemble deep learning model for recognizing the simple, complex, and heterogeneous human activities
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-14492-0.pdf
Reference54 articles.
1. Agarwal P, Alam M (2020) A lightweight deep learning model for human activity recognition on edge devices. Procedia Comput Sci 167:2364–2373. https://doi.org/10.1016/j.procs.2020.03.289
2. Bojan Kolosnjaji CE (2015) Neural network-based user-independent physical activity recognition for Mobile devices. 378–386 https://doi.org/10.1007/978-3-319-24834-9
3. Cao Y, Geddes TA, Yang JYH, Yang P (2020) Ensemble deep learning in bioinformatics. Nat Mach Intell 2:500–508. https://doi.org/10.1038/s42256-020-0217-y
4. Chen WH, Betancourt Baca CA, Tou CH (2017) LSTM-RNNs combined with scene information for human activity recognition. 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services, Healthcom 2017 2017-Decem:1–6. https://doi.org/10.1109/HealthCom.2017.8210846
5. de Vita A, Pau D, di Benedetto L, Licciardo GD (2021) Highly-accurate binary tiny neural network for low-power human activity recognition. Microprocess Microsyst 87:104371. https://doi.org/10.1016/j.micpro.2021.104371
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Preparation and characterization of polydimethylsiloxane based magnetic fluid;Journal of Magnetism and Magnetic Materials;2024-11
2. Beyond Grids: Scaling Up Continuous Kernels via Adaptive Point Representations for Sensor-Based Human Activity Recognition;IEEE Sensors Journal;2024-08-01
3. Human activity recognition: A comprehensive review;Expert Systems;2024-07-27
4. Unlocking the potential of RNN and CNN models for accurate rehabilitation exercise classification on multi-datasets;Multimedia Tools and Applications;2024-04-12
5. Comparative Performance Exploration of Different Machine Learning and Deep Learning Algorithms for Classification of Hand Wrist Gestures;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3