Machine learning-based solutions for resource management in fog computing
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-16399-2.pdf
Reference80 articles.
1. Abdulkareem KH, Mohammed MA, Gunasekaran SS, Al-Mhiqani MN, Mutlag AA, Mostafa SA, Ali NS, Ibrahim DA (2019) A review of fog computing and machine learning: Concepts, applications, challenges, and open issues. IEEE Access 7:153123–153140. https://doi.org/10.1109/ACCESS.2019.2947542
2. Abdullah M, Iqbal W, Mahmood A, Bukhari F, Erradi A (2021) Predictive autoscaling of microservices hosted in fog microdata center. IEEE Syst J 15(1):1275–1286. https://doi.org/10.1109/JSYST.2020.2997518
3. Ahvar E, Ahvar S, Mann ZA, Crespi N, Glitho R, Garcia-Alfaro J (2021) Deca: A dynamic energy cost and carbon emission-efficient application placement method for edge clouds. IEEE Access 9:70192–70213. https://doi.org/10.1109/ACCESS.2021.3075973
4. Ahvar E, Ahvar S, Raza SM, Manuel Sanchez Vilchez J, Lee GM (2021) Next generation of sdn in cloud-fog for 5g and beyond-enabled applications: Opportunities and challenges. Network 1(1):28–49. https://doi.org/10.3390/network1010004
5. Albalawi M, Alkayal E, Barnawi A, Boulares M (2022) Load balancing based on many-objective particle swarm optimization algorithm with support vector regression in fog computing. J Eng Appl Sci Technol 138
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deployment options of AI components for network resource management in 5G‐enabled agile industrial production cell;International Journal of Communication Systems;2024-09-08
2. Multi-objective application placement in fog computing using graph neural network-based reinforcement learning;The Journal of Supercomputing;2024-08-29
3. Dynamic service provisioning in heterogeneous fog computing architecture using deep reinforcement learning;The Journal of Supercomputing;2024-07-29
4. Advancements in heuristic task scheduling for IoT applications in fog-cloud computing: challenges and prospects;PeerJ Computer Science;2024-06-17
5. Machine Learning Based Intelligent Management System for Energy Storage Using Computing Application;EAI Endorsed Transactions on Energy Web;2024-06-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3