Abstract
AbstractReal-time moving object detection is an emerging method in Industry 5.0, that is applied in video surveillance, video coding, human-computer interaction, IoT, robotics, smart home, smart environment, edge and fog computing, cloud computing, and so on. One of the main issues is accurate moving object detection in real-time in a video with challenging background scenes. Numerous existing approaches used multiple features simultaneously to address the problem but did not consider any adaptive/dynamic weight factor to combine these feature spaces. Being inspired by these observations, we propose a background subtraction-based real-time moving object detection method, called DFC-D. This proposal determines an adaptive/dynamic weight factor to provide a weighted fusion of non-smoothing color/gray intensity and non-smoothing gradient magnitude. Moreover, the color-gradient background difference and segmentation noise are employed to modify thresholds and background samples. Our proposed solution achieves the best trade-off between detection accuracy and algorithmic complexity on the benchmark datasets while comparing with the state-of-the-art approaches.
Funder
This work was supported by Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献