Median filters combined with denoising convolutional neural network for Gaussian and impulse noises
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
http://link.springer.com/content/pdf/10.1007/s11042-020-08657-4.pdf
Reference23 articles.
1. Aiswarya K, Jayaraj V, Ebenezer D (2010) A new and efficient algorithm for the removal of high-density salt and pepper noise in images and videos. In: IEEE second international conference on computer modeling and simulation, Sanya, Hainan, China, pp 409–413
2. Chen P, Lien C (2008) An efficient edge-preserving algorithm for removal of salt-and-pepper noise. IEEE Signal Process Lett 15:833–836
3. Demirkaya O (2004) Smoothing impulsive noise using nonlinear diffusion filtering. Springer, Berlin, Heidelberg
4. Desolneu A, Delon J (2013) A patch-based approach for removing mixed Gaussian-impulse noise. J Imaging Sci 6:1140–1174
5. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167v3
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault diagnosis method of rolling bearing based on noise reduction enhanced multi-frequency scale network;Measurement Science and Technology;2024-08-29
2. Design of greenhouse vegetable pest and disease identification method based on improved AlexNet model;2024-06-28
3. HBNet: an integrated approach for resolving class imbalance and global local feature fusion for accurate breast cancer classification;Neural Computing and Applications;2024-02-22
4. Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image Retrieval and Classification for Diabetic Retinopathy Grading;Engineering, Technology & Applied Science Research;2023-10-13
5. Intelligent Breast Mass Classification Approach Using Archimedes Optimization Algorithm with Deep Learning on Digital Mammograms;Biomimetics;2023-10-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3