Unpaired medical image colorization using generative adversarial network

Author:

Liang YihuaiORCID,Lee Dongho,Li YanORCID,Shin Byeong-SeokORCID

Abstract

AbstractWe consider medical image transformation problems where a grayscale image is transformed into a color image. The colorized medical image should have the same features as the input image because extra synthesized features can increase the possibility of diagnostic errors. In this paper, to secure colorized medical images and improve the quality of synthesized images, as well as to leverage unpaired training image data, a colorization network is proposed based on the cycle generative adversarial network (CycleGAN) model, combining a perceptual loss function and a total variation (TV) loss function. Visual comparisons and experimental indicators from the NRMSE, PSNR, and SSIM metrics are used to evaluate the performance of the proposed method. The experimental results show that GAN-based style conversion can be applied to colorization of medical images. As well, the introduction of perceptual loss and TV loss can improve the quality of images produced as a result of colorization better than the result generated by only using the CycleGAN model.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference44 articles.

1. Anwar S, Tahir M, Li C, Mian A, Khan FS, Muzaffar AW (Nov. 2020) Image colorization: a survey and dataset, arXiv:2008.10774 [cs, eess]. Accessed: Nov. 09, 2020. [Online]. Available: http://arxiv.org/abs/2008.10774.

2. Charpiat G, Hofmann M, Schölkopf B (2008) Automatic image colorization via multimodal predictions. in European conference on computer vision:126–139

3. Cheng Z, Yang Q, Sheng B (2015) Deep colorization. in Proceedings of the IEEE International Conference on Computer Vision:415–423

4. Chetlur S et al. (2014) cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759

5. Chia AY-S, Zhuo S, Gupta RK, Tai YW, Cho SY, Tan P, Lin S (Dec. 2011) Semantic colorization with internet images. ACM Trans Graph 30(6):1–8. https://doi.org/10.1145/2070781.2024190

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Colorization System: An Implementation using the Caffe Deep Learning Framework;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

2. Multi-channel feature extraction for virtual histological staining of photon absorption remote sensing images;Scientific Reports;2024-01-23

3. Image color rendering based on frequency channel attention GAN;Signal, Image and Video Processing;2024-01-20

4. Advanced Adversarial Techniques for Enhanced Grayscale Video Colorization Using Deep Learning;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

5. Automatic video colorization based on contrastive learning and optical flow;Multimedia Tools and Applications;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3