Exploring biometric domain adaptation in human action recognition models for unconstrained environments

Author:

Freire-Obregón DavidORCID,Barra Paola,Castrillón-Santana Modesto,De Marsico Maria

Abstract

AbstractIn conventional machine learning (ML), a fundamental assumption is that the training and test sets share identical feature distributions, a reasonable premise drawn from the same dataset. However, real-world scenarios often defy this assumption, as data may originate from diverse sources, causing disparities between training and test data distributions. This leads to a domain shift, where variations emerge between the source and target domains. This study delves into human action recognition (HAR) models within an unconstrained, real-world setting, scrutinizing the impact of input data variations related to contextual information and video encoding. The objective is to highlight the intricacies of model performance and interpretability in this context. Additionally, the study explores the domain adaptability of HAR models, specifically focusing on their potential for re-identifying individuals within uncontrolled environments. The experiments involve seven pre-trained backbone models and introduce a novel analytical approach by linking domain-related (HAR) and domain-unrelated (re-identification (re-ID)) tasks. Two key analyses addressing contextual information and encoding strategies reveal that maintaining the same encoding approach during training results in high task correlation while incorporating richer contextual information enhances performance. A notable outcome of this study is the comprehensive evaluation of a novel transformer-based architecture driven by a HAR backbone, which achieves a robust re-ID performance superior to state-of-the-art (SOTA). However, it faces challenges when other encoding schemes are applied, highlighting the role of the HAR classifier in performance variations.

Funder

Universidad de las Palmas de Gran Canaria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3