Banana leaf diseased image classification using novel HEAP auto encoder (HAE) deep learning

Author:

Ani Brown Mary N ,Robert Singh A. ,Athisayamani Suganya

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference30 articles.

1. Akila and Deepan (2018) Detection and classification of plant leaf diseasesby using deep learning Algorithm', International Journal of Engineering Research & Technology (IJERT), Vol. 6, Issue. 7.

2. Jihen Amara, Bassem Bouaziz and Alsayed Algergawy (2017) A deep learning-based approach for banana leaf diseases classification. Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, pp. 79–88.

3. Arsenovic M, Karanovic M, Sladojevic S, Anderla A, Stefanovic D (2019) 'Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 11:939

4. Chen D (2008) Expectation-maximization algorithm and image Segmentation. ScienceDirect.

5. Chen Y, He F, Li H, Zhang D, Wu Y (2020) A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Elsevier, Applied Soft Computing 93:106335

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning based Automated System for Banana Plant Disease Detection and Classification;International Journal of Next-Generation Computing;2024-08-09

2. Deep learning model for detection and classification of banana diseases based on leaf images;IOP Conference Series: Earth and Environmental Science;2024-06-01

3. Hierarchy in Disease Severity Classification in Banana Leaves through the Integration of Convolutional Neural Network and Decision Tree Models;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

4. Triplet encoded sequence based membrane protein classification using BiLSTM;Multimedia Tools and Applications;2024-04-12

5. A Fine-Tuned Convolutional Neural Network Model for Banana Leaf Disease Detection;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3