Deep feature based forgery detection in video using parallel convolutional neural network: VFID-Net
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-11448-0.pdf
Reference32 articles.
1. Aghamaleki JA, Behrad A (2016) Inter-frame video forgery detection and localization using intrinsic effects of double compression on quantization errors of video coding. Signal Process Image Commun 47:289–302
2. Baghel N, Raikwar SC, Bhatnagar C (2020) Image conditioned keyframe-based video summarization using object detection. arXiv preprint. https://arxiv.org/abs/2009.05269
3. Bakas J, Naskar R (2018) A digital forensic technique for inter–frame video forgery detection based on 3D CNN. In: International conference on information systems security. Springer, Cham
4. Bakas J, Naskar R, Dixit R (2019) Detection and localization of inter-frame video forgeries based on inconsistency in correlation distribution between Haralick coded frames. Multimedia Tools Appl 78(4):4905–4935
5. Bakas J, Naskar R, Bakshi S (2021) Detection and localization of inter-frame forgeries in videos based on macroblock variation and motion vector analysis. Comput Electr Eng 89:106929
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real‐time object‐removal tampering localization in surveillance videos by employing YOLO‐V8;Journal of Forensic Sciences;2024-04-04
2. RETRACTED: Detecting video forgery: A machine learning approach for consistency analysis of video frames;Journal of Intelligent & Fuzzy Systems;2024-03-05
3. A Light Weight Depthwise Separable Layer Optimized CNN Architecture for Object-Based Forgery Detection in Surveillance Videos;The Computer Journal;2024-02-11
4. A comprehensive analysis of digital video forensics techniques and challenges;Iran Journal of Computer Science;2023-12-11
5. Forged Video Detection Using Deep Learning: A SLR;Applied Computational Intelligence and Soft Computing;2023-10-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3