An unsupervised font style transfer model based on generative adversarial networks
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-11777-0.pdf
Reference53 articles.
1. Atarsaikhan G, Iwana BK, Narusawa A, Yanai K, Uchida S (2017, November). Neural font style transfer. In 2017 14th IAPR international conference on document analysis and recognition (ICDAR) (Vol. 5, pp. 51-56). IEEE.
2. Azadi, S., Fisher, M., Kim, V. G., Wang, Z., Shechtman, E., & Darrell, T. (2018). Multi-content Gan for few-shot font style transfer. In proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7564-7573).
3. Baxter W, Govindaraju N (2010, February). Simple data-driven modeling of brushes. In proceedings of the 2010 ACM SIGGRAPH symposium on interactive 3D graphics and games (pp. 135-142).
4. Chang B, Zhang Q, Pan S, Meng L (2018, March) Generating handwritten chinese characters using cyclegan. In 2018 IEEE winter conference on applications of computer vision (WACV) (pp. 199-207). IEEE.
5. Chen J, Ji Y, Chen H, Xu X (2019) Learning one-to-many stylised Chinese character transformation and generation by generative adversarial networks. IET Image Process 13(14):2680–2686
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Review of GAN-Based Research on Chinese Character Font Generation;Chinese Journal of Electronics;2024-05
2. Dual-modality learning and transformer-based approach for high-quality vector font generation;Expert Systems with Applications;2024-04
3. An end-to-end chinese font generation network with stroke semantics and deformable attention skip-connection;Expert Systems with Applications;2024-03
4. MA-Font: Few-Shot Font Generation by Multi-Adaptation Method;IEEE Access;2024
5. Effective Information Guidance for Chinese Font Generation with Skeleton and Channel Expansion;2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR);2023-12-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3