Effective deep Q-networks (EDQN) strategy for resource allocation based on optimized reinforcement learning algorithm

Author:

Talaat Fatma M.ORCID

Abstract

AbstractThe healthcare industry has always been an early adopter of new technology and a big benefactor of it. The use of reinforcement learning in the healthcare system has repeatedly resulted in improved outcomes.. Many challenges exist concerning the architecture of the RL method, measurement metrics, and model choice. More significantly, the validation of RL in authentic clinical settings needs further work. This paper presents a new Effective Resource Allocation Strategy (ERAS) for the Fog environment, which is suitable for Healthcare applications. ERAS tries to achieve effective resource management in the Fog environment via real-time resource allocating as well as prediction algorithms. Comparing the ERAS with the state-of-the-art algorithms, ERAS achieved the minimum Makespan as compared to previous resource allocation algorithms, while maximizing the Average Resource Utilization (ARU) and the Load Balancing Level (LBL). For each application, we further compared and contrasted the architecture of the RL models and the assessment metrics. In critical care, RL has tremendous potential to enhance decision-making. This paper presents two main contributions, (i) Optimization of the RL hyperparameters using PSO, and (ii) Using the optimized RL for the resource allocation and load balancing in the fog environment. Because of its exploitation, exploration, and capacity to get rid of local minima, the PSO has a significant significance when compared to other optimization methodologies.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3