Forged document detection and writer identification through unsupervised deep learning approach

Author:

Tyagi Prachi,Agarwal Khushboo,Jaiswal Garima,Sharma Arun,Rani Ritu

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference29 articles.

1. Abbas A, Khurshid K, Shafait F (2017) Towards automated ink mismatch detection in hyperspectral document images. 2017 14th IAPR international conference on document analysis and recognition (ICDAR) (Vol. 1, 1229-1236). IEEE

2. Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: 2017 international conference on engineering and technology (ICET). IEEE, pp 1–6

3. Amaral AMM, Freitas CO, Bortolozzi F (2012) The graphometry applied to writer identification. In: Proceedings of the international conference on image processing, computer vision, and pattern recognition (IPCV) (p 1). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)

4. Bank D, Koenigstein N, Giryes R (2020) Autoencoders. https://doi.org/10.48550/arXiv.2003.05991

5. Chauhan R, Ghanshala KK, Joshi RC (2018) Convolutional neural network (CNN) for image detection and recognition. In: 2018 first international conference on secure cyber computing and communication (ICSCCC). IEEE, pp 278–282

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of human physiology and facial biomechanics towards building robust deepfake detectors: A comprehensive survey and analysis;Computer Science Review;2024-11

2. Predictive Modeling to Identify Syndrome Patterns;Engineering Cyber-Physical Systems and Critical Infrastructures;2024

3. Robust Attack Identification Strategy to Prevent Document Image Forgeries by using Enhanced Learning Methodology;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3