Credit card fraud detection using ensemble data mining methods
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-14698-2.pdf
Reference31 articles.
1. Abdulrazaq AA, Abdulrazaq MB, Umoh IJ, Adedokun EA (2019) "Fraud detection in credit card and application of VAT clustering algorithm: a review," in 2019 2nd international conference of the IEEE Nigeria computer chapter (NigeriaComputConf)
2. Alicja G, Bakala M, Woznica K, Zwolinski M, Biecek P (2019) "EPP: interpretable score of model predictive power.," arXiv, p. preprint arXiv:1908.09213
3. Altyeb Altaher T, Malebary SJ (2020) An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine. IEEE Access 8 8:25579–25587
4. Arya M, Hanumat SG (2020) DEAL–‘deep ensemble ALgorithm’Framework for credit card fraud detection in real-time data stream with Google TensorFlow. Smart Sci 8(2):71–83
5. Ayyadevara VK (2018) "Gradient Boosting Machine," Pro Machine Learning Algorithms. pp. 117–134
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis and Performance Evaluation of Credit Card Fraud by Multi-model ML;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25
2. Efficient loss updated XGBoost with deep emended genetic algorithm for detecting online fraudulent transactions;Multimedia Tools and Applications;2024-04-20
3. Automated Fraud Detection in Financial Transactions using Machine Learning: An Ensemble Perspective;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15
4. Modeling the Dynamic Behaviors of Bank Account Fraudsters Using Combined Simultaneous Game Theory with Neural Networks;2024-02-15
5. Deep Learning for Credit Card Fraud Detection: A Review of Algorithms, Challenges, and Solutions;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3