Cross-resolution face identification using deep-convolutional neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-10745-y.pdf
Reference58 articles.
1. Abate AF, Nappi M, Riccio D, Sabatino G (2007) 2D and 3D face recognition: a survey. Pattern Recogn Lett 28(14):1885–1906
2. Ahmed A, Guo J, Ali F, et al (2018) LBPH based improved face recognition at low resolution. In:International Conference on Artificial Intelligence and Big Data (ICAIBD) pp. 144-147. IEEE.
3. Alobaidi T, Mikhael W B (2018) A wavelet domain implementation of sparse representation method for face recognition. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) pp. 214-217. IEEE
4. Anas IY, Bamgbose BO, Nuhu S (2019) A comparison between 2D and 3D methods of quantifying facial morphology. Heliyon 5(6):e01880
5. Arya K V, Rajawat A, Pandey M K, Rajput S S (2017) Very low resolution face recognition using fused visual and texture features. In: Conference on Information and Communication Technology (CICT) pp. 1-5. IEEE.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Activity Recognition System via Unification of CNN and SVM in Complex Domain;2023 6th International Conference on Information Systems and Computer Networks (ISCON);2023-03-03
2. Writer independent handwritten signature verification on multi-scripted signatures using hybrid CNN-BiLSTM: A novel approach;Expert Systems with Applications;2023-03
3. A low-resolution real-time face recognition using extreme learning machine and its variants;The Imaging Science Journal;2023-02-28
4. Noise robust face super-resolution via learning of spatial attentive features;Multimedia Tools and Applications;2023-02-21
5. A survey of deep domain adaptation based on label set classification;Multimedia Tools and Applications;2022-04-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3