1. Achlioptas P, Diamanti O, Mitliagkas I, Guibas L (2018) Learning representations and generative models for 3D point clouds. In: Proceedings of the 35th international conference on machine learning, vol 80, pp 40–49. PMLR. http://proceedings.mlr.press/v80/achlioptas18a.html
2. Ahmed E, Saint A, Shabayek AER, Cherenkova K, Das R, Gusev G, Aouada D, Ottersten B (2018) A survey on deep learning advances on different 3d data representations. arXiv:1808.01462
3. Altwaijry H, Veit A, Belongie SJ, Tech C (2016) Learning to detect and match keypoints with deep architectures. In: Proceedings of the British Machine Vision Conference (BMVC). BMVA Press, pp 49.1–49.12. https://doi.org/10.5244/C.30.49
4. Azimi S, Gandhi TK (2019) Performance comparison of 3d correspondence grouping algorithm for 3d plant point clouds. arXiv:1909.00866
5. Berger M, Tagliasacchi A, Seversky L, Alliez P, Levine J, Sharf A, Silva C (2014) State of the art in surface reconstruction from point clouds. In: Eurographics 2014 - State of the Art Reports. The Eurographics Association, https://doi.org/10.2312/egst.20141040